(((3x^2)+30x-69)/(5x-9))=8

Simple and best practice solution for (((3x^2)+30x-69)/(5x-9))=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (((3x^2)+30x-69)/(5x-9))=8 equation:



(((3x^2)+30x-69)/(5x-9))=8
We move all terms to the left:
(((3x^2)+30x-69)/(5x-9))-(8)=0
Domain of the equation: (5x-9))!=0
x∈R
We multiply all the terms by the denominator
((3x^2+30x-69)-8*(5x-9))=0
We calculate terms in parentheses: +((3x^2+30x-69)-8*(5x-9)), so:
(3x^2+30x-69)-8*(5x-9)
We multiply parentheses
(3x^2+30x-69)-40x+72
We get rid of parentheses
3x^2+30x-40x-69+72
We add all the numbers together, and all the variables
3x^2-10x+3
Back to the equation:
+(3x^2-10x+3)
We get rid of parentheses
3x^2-10x+3=0
a = 3; b = -10; c = +3;
Δ = b2-4ac
Δ = -102-4·3·3
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-8}{2*3}=\frac{2}{6} =1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+8}{2*3}=\frac{18}{6} =3 $

See similar equations:

| -24+4p=12 | | s-8=-13-4 | | X^2+9x^2=160 | | 18x+1=-8 | | 5f−12=72 | | 160=2•8•x | | 5f−-12=72 | | 97=s/5-88 | | 5y+y^2=1 | | 0=2X+5y-50 | | 8x–3(x–1)=4(x+2) | | 5y+y^=1 | | 4x+38/5x-16=0 | | -29=9+8(s-7) | | 88=2h+40 | | 3.2=2p | | 4n-150=1250 | | r/10-7=-5 | | 3(6a+9)=11(a–2) | | -5(17+5y)-6y=8 | | 15=t/4+11 | | h/2+7=11 | | 2n-22=58 | | 5×m=−10 | | -2y–7=3-2y–7=3-2y–7=3-2y–7=3-2y–7=3-2y–7=3 | | x+13=42x | | x+x+30=1122 | | (1-4x)-2(1-3x)=5 | | g/2+-1=2 | | 7(n+)=21 | | 3x-2(4x+35)=-30 | | 3x(7-2)=62(1-2x) |

Equations solver categories